

Generative Speech Enhancement with Self-Supervised Learning Models

1 *Yanjue Song*, 2 Doyeon Kim, 2 Hong-Goo Kang, and 1 Nilesh Madhu

- ¹ IDLab, Ghent University imec, Belgium
- ² Dept. of Electrical and Electronic Eng., Yonsei University, Seoul, Korea

Self-Supervised Learning (SSL) Models

Learning representations from data without human-labelled examples

- -
-

Self-Supervised Learning (SSL) Models

- **Learning representations from** data without human-labelled examples
- Extracted representations (embeddings) capable of various tasks
	- \blacktriangleright e.g., emotion recognition, speaker identification, ASR...
-

Self-Supervised Learning (SSL) Models

- **Learning representations from** data without human-labelled examples
- Extracted representations (embeddings) capable of various tasks
	- \blacktriangleright e.g., emotion recognition, speaker identification, ASR...
- Many different pre-trained models available

SSL Models in Speech Enhancement?

SSL Models in Speech Enhancement?

Which pre-trained SSL model?

 \rightarrow SSL model selection based on quantitative analysis of embeddings

Song Y, Kim D, Madhu N, Kang H.-G. On the Disentanglement and Robustness of Self-Supervised Speech Representations. In 2024 International Conference on Electronics, Information, and Communication (ICEIC) 2024 Jan 28 (pp. 662-665). IEEE.

SSL Models in Speech Enhancement?

▶ Which pre-trained SSL model?

 \rightarrow SSL model selection based on quantitative analysis of embeddings

Song Y, Kim D, Madhu N, Kang H.-G. On the Disentanglement and Robustness of Self-Supervised Speech Representations. In 2024 International Conference on Electronics, Information, and Communication (ICEIC) 2024 Jan 28 (pp. 662-665). IEEE.

\blacktriangleright How to use it?

\rightarrow Improvement of the speech re-synthesis framework

Song Y,, Kim D, Kang H.-G, and Madhu N. Spectrum-Aware Neural Vocoder Based on Self-Supervised Learning for Speech Enhancement. In 2024 32nd European Conference on Signal Processing (EUSIPCO) 2024 Aug 26 (pp. 16-20). IEEE.

Selection Criteria

 \blacktriangleright How robust are these models in the real world? \rightarrow Interference robustness

 \triangleright What is extracted by the pre-trained models? \rightarrow Preserved information

Materials

Pretrained SSL models

- 1. HuBERT: predicting clustering labels of masked frames
- 2. wavLM: HuBERT with data augmentation (additive noise)
- 3. wav2vec 2.0: contrastive learning of the quantised representations
- 4. TERA: predicting masked spectrogram

- ▶ Interference robustness
	- \star Valentini (speech) + DEMAND (noise) + MIT IR Survey (RIRs)
- ▶ Preserved information: TIMIT with human annotation

Materials

Pretrained SSL models

- 1. HuBERT: predicting clustering labels of masked frames
- 2. wavLM: HuBERT with data augmentation (additive noise)
- 3. wav2vec 2.0: contrastive learning of the quantised representations
- 4. TERA: predicting masked spectrogram
- \blacktriangleright Data
	- ▶ Interference robustness
		- \star Valentini (speech) + DEMAND (noise) + MIT IR Survey (RIRs)
	- ▶ Preserved information: TIMIT with human annotation

Robustness Metrics

- \triangleright Measure the distance between the embeddings of the distorted speech (e_x) and the clean reference (e_s)
	- 1. Normalised Mean-square Error (MSE) ↓

$$
d(\mathbf{e_s}, \mathbf{e_x}) = \frac{1}{N} \left(\frac{\mathbf{e_s} - \mathbf{e_x}}{\sigma} \right)^T \cdot \left(\frac{\mathbf{e_s} - \mathbf{e_x}}{\sigma} \right)
$$

2. Cosine similarity (CS) ↑

$$
c(\mathbf{e_s}, \mathbf{e_x}) = \frac{\mathbf{e_s}^T \mathbf{e_x}}{\|\mathbf{e_s}\|\|\mathbf{e_x}\|}
$$

Robustness of SSL models

On the noisy and reverberant test set,

TERA shows highest robustness against interference.

Preserved Information

Logistic regression model (embeddings \rightarrow labels) training accuracy (Linearly separable)

- \triangleright Contextual information (word prediction acc.) $>$ phonetic information (phoneme prediction acc.)
- + Speaker information preservation
- − Long-term contextual information

Leveraging Self-Supervised Learning for Speech Enhancement

Baseline: denoising vocoder $¹$ </sup>

¹Irvin B, Stamenovic M, Kegler M, Yang LC. Self-supervised learning for speech enhancement through synthesis. In ICASSP 2023.

Leveraging Self-Supervised Learning for Speech Enhancement

¹Irvin B, Stamenovic M, Kegler M, Yang LC. Self-supervised learning for speech enhancement through synthesis. In ICASSP 2023. 2 Kong J, Kim J, Bae J. HiFi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesis. In NeurIPS 2020.

Proposed Framework

Proposed: spectrum-aware denoising vocoder

\blacktriangleright Pre-trained SSL model $==$ TERA

-
- - ▶ What transformation/spectrogram?
	- ▶ How to fuse the two features?

Proposed Framework

Proposed: spectrum-aware denoising vocoder

- \blacktriangleright Pre-trained SSL model $==$ TERA
- Introduction noisy spectrogram for additional information
- - ▶ What transformation/spectrogram?
	- ▶ How to fuse the two features?

Proposed Framework

Proposed: spectrum-aware denoising vocoder

- \blacktriangleright Pre-trained SSL model $==$ TERA
- Introduction noisy spectrogram for additional information
- ▶ Components to be optimised
	- ▶ What transformation/spectrogram?
	- ▶ How to fuse the two features?

Proposed System

Data and Evaluation Metrics

Training Dataset:

- DNS 2021 challenge dataset (RIR: SLR26 and SLR28)
- \blacktriangleright SNR \in $[-5, 20]$ dB
- ► T60s \in [0.3, 1.3] sec

Evaluation metrics:

- 1. STOI
- 2. Speaker embedding (ECAPA-TDNN³) cosine similarity
- 3. DNSMOS
- 4. NISQAv2

Test Dataset:

- \triangleright CSTR VCTK dataset $+$ NOISEX92 $+$ MIT RIR
- \triangleright SNR ∈ {-7, 0, 5, 10, 15} dB
- ► T60s \in [0.3, 1.3] sec

³Desplanques B, Thienpondt J, Demuynck K. ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification. In Interspeech 2020.

Evaluation Results

 \blacktriangleright Improvement in the naturalness of synthesised audio

Conclusions

- ▶ TERA shows high robustness against interference
- Introduction of *noisy spectrum* improves the synthesis quality of the SSL-based neural vocoder
- Effective conditioning: *cross attention* block conditions noisy spectra by SSL embeddings

Spectrum-Aware Neural Vocoder Based on Self-Supervised Learning for Speech Enhancement

More samples:

Robustness: Analysis by SNRs and T60s

Table 1: Analysis of pretrained SSL model according to the SNR (dB) of noise distortion.

Figure 4: Analysis of pretrained SSL model according to the various RT60 (sec).

Preserved Information

Figure 5: The t-SNE plot of embedding distributions of all 'ao' sounds in 'sa1' from TIMIT training set, labeled by the words to which the phoneme belongs, or the speaker genders.

 \blacktriangleright How linearly-separable are the embeddings for one label? \rightarrow Training accuracy of multinomial logistic regression

Research Questions

- \triangleright Q1: How does the spectrum representation affect the system performance?
- ▶ Q2: How important is each hidden state of TERA?
- Q3: Which fusion method performs better (addition, cross-attention, FiLM)?
- \triangleright Q4: For cross-attention and FiLM, which feature is best suited as the conditioning?

Evaluation Results: Preferred System

- \blacktriangleright Q1: How does the spectrum representation affect the system performance?
- \blacktriangleright Improvement in the naturalness of the synthetic audio
- **Log-spectrogram works better**

Ablation Study: Embeddings as Input

- ▶ Q4: For cross-attention and FiLM, which feature is best suited as the conditioning?
- \blacktriangleright For attention fusion: spectrogram conditioned by embeddings

Ablation Study: Hidden Layers

▶ Q2: How important is each hidden state of TERA?

٠

- \triangleright The last layer contributes the most.
 \triangleright Beneficial to include all layers
- Beneficial to include all layers

Variant	Layer1	Layer2	Layer3	Layer4
	-0.002	-0.011	0.036	0.098
\mathfrak{p}	0.003	0.016	-0.105	-0.248
4	0.017	0.025	-0.479	-1.229
5	0.015	0.116	-0.586	-1.495
8	-0.068	-0.048	-0.041	0.115

Combination weights for TERA hidden state layers

Ablation Study: Fusion Methods

- ▶ Q3: Which fusion method performs better?
- \blacktriangleright Attention/addition both boost the objective scores

