

Generative Speech Enhancement with Self-Supervised Learning Models

¹Yanjue Song, ²Doyeon Kim, ²Hong-Goo Kang, and ¹Nilesh Madhu

- ¹ IDLab, Ghent University imec, Belgium
- ² Dept. of Electrical and Electronic Eng., Yonsei University, Seoul, Korea

Self-Supervised Learning (SSL) Models

 Learning representations from data without human-labelled examples

 Extracted representations (embeddings) capable of various tasks

 e.g., emotion recognition, speaker identification, ASR...

 Many different pre-trained models available

Self-Supervised Learning (SSL) Models

- Learning representations from data without human-labelled examples
- Extracted representations (embeddings) capable of various tasks
 - e.g., emotion recognition, speaker identification, ASR...
- Many different pre-trained models available

Self-Supervised Learning (SSL) Models

- Learning representations from data without human-labelled examples
- Extracted representations (embeddings) capable of various tasks
 - e.g., emotion recognition, speaker identification, ASR...
- Many different pre-trained models available

SSL Models in Speech Enhancement?

► Which pre-trained SSL model?

 \rightarrow SSL model selection based on quantitative analysis of embeddings Song Y, Kim D, Madhu N, Kang H.-G. On the Disentanglement and Robustness of Self-Supervised Speech Representations. In 2024 International Conference on Electronics, Information, and Communication (ICEIC) 2024 Jan 28 (pp. 662-665). IEEE.

► How to use it?

ightarrow Improvement of the speech re-synthesis framework

Song Y., Kim D., Kang H.-G., and Madhu N. Spectrum-Aware Neural Vocoder Based on Self-Supervised Learning for Speech Enhancement. In *2024 32nd European Conference on Signal Processing (EUSIPCO)* 2024 Aug 26 (pp. 16-20). IEEE.

SSL Models in Speech Enhancement?

Which pre-trained SSL model?

→ SSL model selection based on quantitative analysis of embeddings Song Y, Kim D, Madhu N, Kang H.-G. On the Disentanglement and Robustness of Self-Supervised Speech Representations. In *2024 International Conference on Electronics, Information, and Communication (ICEIC)* 2024 Jan 28 (pp. 662-665). IEEE.

► How to use it?

ightarrow Improvement of the speech re-synthesis framework

Song Y,, Kim D, Kang H.-G, and Madhu N. Spectrum-Aware Neural Vocoder Based on

Self-Supervised Learning for Speech Enhancement. In 2024 32nd European Conference on Signal Processing (EUSIPCO) 2024 Aug 26 (pp. 16-20). IEEE.

SSL Models in Speech Enhancement?

Which pre-trained SSL model?

 \rightarrow SSL model selection based on quantitative analysis of embeddings

Song Y, Kim D, Madhu N, Kang H.-G. On the Disentanglement and Robustness of Self-Supervised Speech Representations. In *2024 International Conference on Electronics, Information, and Communication (ICEIC)* 2024 Jan 28 (pp. 662-665). IEEE.

► How to use it?

\rightarrow Improvement of the speech re-synthesis framework

Song Y,, Kim D, Kang H.-G, and Madhu N. Spectrum-Aware Neural Vocoder Based on Self-Supervised Learning for Speech Enhancement. In *2024 32nd European Conference on Signal Processing (EUSIPCO)* 2024 Aug 26 (pp. 16-20). IEEE.

Selection Criteria

- ► How robust are these models in the real world? → Interference robustness
- What is extracted by the pre-trained models? → Preserved information

Materials

Pretrained SSL models

- 1. HuBERT: predicting clustering labels of masked frames
- 2. wavLM: HuBERT with data augmentation (additive noise)
- 3. wav2vec 2.0: contrastive learning of the quantised representations
- 4. TERA: predicting masked spectrogram

Data

- Interference robustness
 - * Valentini (speech) + DEMAND (noise) + MIT IR Survey (RIRs)
- Preserved information: TIMIT with human annotation

Materials

Pretrained SSL models

- 1. HuBERT: predicting clustering labels of masked frames
- 2. wavLM: HuBERT with data augmentation (additive noise)
- 3. wav2vec 2.0: contrastive learning of the quantised representations
- 4. TERA: predicting masked spectrogram
- Data
 - Interference robustness
 - ★ Valentini (speech) + DEMAND (noise) + MIT IR Survey (RIRs)
 - Preserved information: TIMIT with human annotation

Robustness Metrics

- \blacktriangleright Measure the distance between the embeddings of the distorted speech (e_x) and the clean reference (e_s)
 - 1. Normalised Mean-square Error (MSE) \downarrow

$$d(\mathbf{e_s}, \mathbf{e_x}) = \frac{1}{N} \left(\frac{\mathbf{e_s} - \mathbf{e_x}}{\sigma}\right)^T \cdot \left(\frac{\mathbf{e_s} - \mathbf{e_x}}{\sigma}\right)$$

2. Cosine similarity (CS) \uparrow

$$c(\mathbf{e_s}, \mathbf{e_x}) = \frac{\mathbf{e_s}^T \mathbf{e_x}}{\|\mathbf{e_s}\| \|\mathbf{e_x}\|}$$

Robustness of SSL models

On the noisy and reverberant test set,

TERA shows highest robustness against interference.

Preserved Information

Logistic regression model (embeddings \rightarrow labels) training accuracy (Linearly separable)

Data source	Target (total)		HuBERT	r acy (%) wav2vec2.0	wavLM	
sentence sa1	Phoneme (46) Word (12)		93.2 99.2	86.8 94.5	89.1 95.6	92.7 99.0
set <i>sx</i>	Sentence (330) Speaker (462)		98.7 90.0	<u>73.8</u> 94.5	93.0 94.7	92.9 53.0

- Contextual information (word prediction acc.) > phonetic information (phoneme prediction acc.)
- + Speaker information preservation
- Long-term contextual information

Leveraging Self-Supervised Learning for Speech Enhancement

Baseline: denoising vocoder¹

¹Irvin B, Stamenovic M, Kegler M, Yang LC. Self-supervised learning for speech enhancement through synthesis. In ICASSP 2023.

Leveraging Self-Supervised Learning for Speech Enhancement

¹Irvin B, Stamenovic M, Kegler M, Yang LC. Self-supervised learning for speech enhancement through synthesis. In ICASSP 2023. ²Kong J, Kim J, Bae J. HiFi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesis. In NeurIPS 2020.

Proposed Framework

Proposed: spectrum-aware denoising vocoder

Pre-trained SSL model == TERA

- Introduction noisy spectrogram for additional information
- Components to be optimised
 - What transformation/spectrogram?
 - How to fuse the two features?

Proposed Framework

Proposed: spectrum-aware denoising vocoder

- Pre-trained SSL model == TERA
- Introduction noisy spectrogram for additional information
- Components to be optimised
 - What transformation/spectrogram?
 - How to fuse the two features?

Proposed Framework

Proposed: spectrum-aware denoising vocoder

- Pre-trained SSL model == TERA
- Introduction noisy spectrogram for additional information
- Components to be optimised
 - What transformation/spectrogram?
 - How to fuse the two features?

Proposed System

Data and Evaluation Metrics

Training Dataset:

- DNS 2021 challenge dataset (RIR: SLR26 and SLR28)
- ▶ SNR $\in [-5, 20] \, \mathrm{dB}$
- $\blacktriangleright \ \mathsf{T60s} \in [0.3, 1.3] \, \mathsf{sec}$

Evaluation metrics:

- 1. STOI
- 2. Speaker embedding (ECAPA-TDNN³) cosine similarity
- 3. DNSMOS
- 4. NISQAv2

³Desplanques B, Thienpondt J, Demuynck K. ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification. In Interspeech 2020.

Test Dataset:

- CSTR VCTK dataset + NOISEX92
 + MIT RIR
- ▶ SNR $\in \{-7, 0, 5, 10, 15\} \, dB$
- ▶ T60s $\in [0.3, 1.3]$ sec

Evaluation Results

Improvement in the naturalness of synthesised audio

Model Description	;	sтоі	I		DNSMOS		NISQAv2	Spk. embed.	
			I	OVRL	SIG	ВАК			
Distorted signals Denoising vocoder (baseline)		0.770 0.808		1.814 3.086	2.458 3.379	2.005 4.043	1.659 3.097	0.	.600 .551
Spectrum-aware vocoder (proposed) + Magnitude spectrum + Additive-fusion		0.811 0.819 0.814		3.054 2.999 3.017	3.405 3.374 3.306	3.892 3.835 3.997	3.691 3.566 3.768	0. 0. 0.	.529 .552 .584
Clean signals		1		3.668	3.951	4.209	4.550		1

Conclusions

- ► TERA shows high robustness against interference
- Introduction of *noisy spectrum* improves the synthesis quality of the SSL-based neural vocoder
- Effective conditioning: cross attention block conditions noisy spectra by SSL embeddings

Spectrum-Aware Neural Vocoder Based on Self-Supervised Learning for Speech Enhancement

More samples:

Robustness: Analysis by SNRs and T60s

Table 1: Analysis of pretrained SSL model according to the SNR (dB) of noise distortion.

Mo	del	-7	0	5	10	15
wavLM	MSE ↓	0.967	0.593	0.430	0.352	0.295
	CS ↑	0.521	0.701	0.778	0.816	0.847
TERA	MSE ↓	0.452	0.334	0.265	0.212	0.166
	CS ↑	0.746	0.818	0.859	0.889	0.915

Figure 4: Analysis of pretrained SSL model according to the various RT60 (sec).

Preserved Information

Figure 5: The t-SNE plot of embedding distributions of all 'ao' sounds in 'sa1' from TIMIT training set, labeled by the words to which the phoneme belongs, or the speaker genders.

► How linearly-separable are the embeddings for one label? → Training accuracy of multinomial logistic regression

Research Questions

- ▶ Q1: How does the spectrum representation affect the system performance?
- ▶ Q2: How important is each hidden state of TERA?
- ▶ Q3: Which fusion method performs better (addition, cross-attention, FiLM)?
- ▶ Q4: For cross-attention and FiLM, which feature is best suited as the conditioning?

Evaluation Results: Preferred System

- ▶ Q1: How does the spectrum representation affect the system performance?
- Improvement in the naturalness of the synthetic audio
- Log-spectrogram works better

No. Model Description	🗏 stoi		DNSMOS			NISQAv2	2		Spk. embed.
		OVRL	SIG	BAK MOS	NOIS.	DIS.	COL.	LOUD.	CS .
- Distorted signals	0.770	1.814	2.458	2.005 1.659	1.697	3.073	2.328	2.505	0.600
 Denoising vocoder (baseline) Proposed reference Magnitude spectrum feature 	0.808 0.811 0.819	3.086 3.054 2.999	3.379 3.405 3.374	4.0433.0973.8923.6913.8353.566	3.601 3.526 3.406	3.325 3.998 3.997	2.953 3.494 3.433	3.726 3.992 3.906	0.551 0.529 0.552
8 Clean embedding - Clean signals	0.949 1	3.121 3.668	3.429 3.951	3.9774.1614.2094.550	3.876 4.251	4.330 4.596	3.979 4.301	4.238 4.476	0.899 -

Ablation Study: Embeddings as Input

- ▶ Q4: For cross-attention and FiLM, which feature is best suited as the conditioning?
- ▶ For attention fusion: spectrogram conditioned by embeddings

No.	Model Description	stoi		0	ONSMOS					NISQAv2			Spk. embed.
			0	/RL	SIG	BAK	M	IOS	NOIS.	DIS.	COL.	LOUD.	C3
-	Distorted signals	0.770	1.	814	2.458	2.005	1.	659	1.697	3.073	2.328	2.505	0.600
- 1 6	Denoising vocoder (baseline) Proposed reference Attention conditioned by spec- trum	0.808 0.811 0.811	3. 3. 2.	0 86 054 966	3.379 3.405 3.261	4.043 3.892 3.968	3. 3. 3.	097 691 522	3.601 3.526 3.602	3.325 3.998 3.862	2.953 3.494 3.276	3.726 3.992 3.876	0.551 0.529 0.524
8 -	Clean embedding Clean signals	0.949 1	3. 3.	121 668	3.429 3.951	3.977 4.209	4. 4.	161 550	3.876 4.251	4.330 4.596	3.979 4.301	4.238 4.476	0.899

Ablation Study: Hidden Layers

▶ Q2: How important is each hidden state of TERA?

-

- ▶ The last layer contributes the most.
- Beneficial to include all layers

Variant		Layer1		Layer2		Layer3		Layer4
1	Ш	-0.002	Τ	-0.011	1	0.036	I	0.098
2		0.003		0.016		-0.105		-0.248
4		0.017		0.025		-0.479		-1.229
5		0.015		0.116		-0.586		-1.495
8		-0.068		-0.048		-0.041		0.115

Combination weights for TERA hidden state layers

No. Model Description	∥ ѕто		DNSMOS	;		NISQAv	2		Spk. embed.
		OVRL	SIG	ВАК МС	S NOIS.	DIS.	COL.	LOUD.	
- Distorted signals	0.770) 1.814	2.458	2.005 1.6	59 1.697	3.073	2.328	2.505	0.600
- Denoising vocoder (baseline) 1 Proposed reference 3 TERA - last hidden state	0.808 0.811 0.798	3 3.086 3.054 3 2.955	3.379 3.405 3.303	4.0433.03.8923.63.8763.6	3.601 3.526 3.609	3.325 3.998 3.955	2.953 3.494 3.351	3.726 3.992 3.870	0.551 0.529 0.524
8 Clean embedding - Clean signals	0.949	3.121 3.668	3.429 3.951	3.977 4.1 4.209 4.5	51 3.876 50 4.251	4.330 4.596	3.979 4.301	4.238 4.476	0.899

Ablation Study: Fusion Methods

- ▶ Q3: Which fusion method performs better?
- Attention/addition both boost the objective scores

No.	Model Description	stoi			DNSMOS				NISQAv2	!		Spk. embed.
				OVRL	SIG	BAK	MOS	NOIS.	DIS.	COL.	LOUD.	CS
-	Distorted signals	0.770		1.814	2.458	2.005	1.659	1.697	3.073	2.328	2.505	0.600
-	Denoising vocoder (baseline)	0.808	1	3.086	3.379	4.043	3.097	3.601	3.325	2.953	3.726	0.551
1	Proposed reference	0.811		3.054	3.405	3.892	3.691	3.526	3.998	3.494	3.992	0.529
4	Additive-fusion	0.814		3.017	3.306	3.997	3.768	3.932	4.032	3.465	3.984	0.584
5	FiLM	0.739		2.696	3.005	3.827	2.828	3.409	3.408	2.614	3.434	0.387
8 -	Clean embedding Clean signals	0.949 1		3.121 3.668	3.429 3.951	3.977 4.209	4.161 4.550	3.876 4.251	4.330 4.596	3.979 4.301	4.238 4.476	0.899