DNN-guided Parameter Estimation for Speech Enhancement

October 15, 2024

Shuai Tao¹, Pejman Mowlaee², Jesper Rindom Jensen¹, Mads Græsbøll Christensen¹

¹ Audio Analysis Lab, Electronic Systems, Aalborg University, Denmark ²GN Audio A/S, Lautrupbjerg 7, 2750 Ballerup, Denmark

Signal Mode and MC-SPP

Proposed Method

Experimental Settings

Experimental Results

Signal Mode and MC-SPP

Proposed Method

Experimental Settings

Experimental Results

- Minimum variance distortionless response (MVDR) provides an optimal solution for beamforming.
- Statistics i.e. noise power density (PSD) matrix and steering vector are required for MVDR beamforming.
- Knowledge of the SPP allows for better estimation of noise and speech statistics. For multi-channel, SPP can be estimated as more effective as it includes spatial information.
- To achieve accurate MC-SPP estimation, the low-parameter model is employed to estimate MC-SPP.
- Guided by the MC-SPP estimate, statistics are estimated. Finally, an improved MVDR beamforming is performed.

Signal Mode and MC-SPP

Proposed Method

Experimental Settings

Experimental Results

Signal Model and MC-SPP

In the short-time Fourier transform domain, with noise and reverberation, a microphone array (*M* microphones) observed one signal $\mathbf{y}(k, l) = [y_0(k, l), ..., y_{M-1}(k, l)]^T$, which is given by

$$\mathbf{y}(k,l) = \mathbf{x}(k,l) + \mathbf{v}(k,l) + \mathbf{r}(k,l), \tag{1}$$

where *k* and *l* are the frequency and time index, $\mathbf{x}(k, l) = [x_0(k, l), ..., x_{M-1}(k, l)]^T$ is the clean speech, $\mathbf{v}(k, l) = [v_0(k, l), ..., v_{M-1}(k, l)]^T$ is the background noise, and $\mathbf{r}(k, l) = [r_0(k, l), ..., r_{M-1}(k, l)]^T$ is the reverberant speech. Assuming $\mathbf{n}(k, l) = \mathbf{r}(k, l) + \mathbf{v}(k, l)$, (1) is rewritten as

$$y(k, l) = x(k, l) + n(k, l).$$
 (2)

Signal Model and MC-SPP

The clean and noise power spectral density (PSD) matrices are given by

$$\Phi_{xx}(k,l) = \mathrm{E}\left[\mathbf{x}(k,l)\mathbf{x}^{H}(k,l)\right],\tag{3}$$

and

$$\Phi_{nn}(k,l) = \mathbb{E}\left[\mathbf{n}(k,l)\mathbf{n}^{H}(k,l)\right].$$
(4)

Let \mathcal{H}_0 and \mathcal{H}_1 denote the speech absence and presence, we have

$$\begin{cases} \mathcal{H}_0 : \mathbf{y}(k,l) = \mathbf{n}(k,l) \\ \mathcal{H}_1 : \mathbf{y}(k,l) = \mathbf{x}(k,l) + \mathbf{n}(k,l). \end{cases}$$
(5)

Signal Mode and MC-SPP

With the multivariate Gaussian distribution [1], the likelihood functions of speech and noise can be obtained by

$$p[\mathbf{y}(k, l)|\mathcal{H}_{1}] = \frac{1}{\pi^{M} \det \left[\Phi_{xx}(k, l) + \Phi_{nn}(k, l)\right]} \times \exp\{-\mathbf{y}(k, l) \left[\Phi_{nn}(k, l) + \Phi_{xx}(k, l)\right]^{-1} \mathbf{y}(k, l)\},$$
(6)

and

$$p[\mathbf{y}(k,l)|\mathcal{H}_0] = \frac{1}{\pi^M \det \left[\Phi_{nn}(k,l)\right]}$$

$$\times \exp\{-\mathbf{y}^H(k,l)\Phi_{nn}(k,l)\mathbf{y}(k,l)\}.$$
(7)

Signal Mode and MC-SPP

Using Bayes rule, the *a posteriori* MC-SPP $p(k, l) = p[\mathbf{y}(k, l)|\mathcal{H}_1]$ can be obtained by

$$p(k,l) = \left\{ 1 + \frac{q(k,l)}{1 - q(k,l)} [1 + \xi(k,l)] \exp\left[-\frac{\beta(k,l)}{1 + \xi(k,l)}\right] \right\}^{-1}, \quad (8)$$

where q(k, l) is the *a priori* speech absence probability (SAP), $\xi(k, l)$ is the multi-channel *a priori* signal-to-noise ratio (SNR) defined as

$$\xi(k,l) = \operatorname{tr} \left[\Phi_{nn}^{-1}(k,l) \Phi_{xx}(k,l) \right], \tag{9}$$

and $\beta(k, l)$ is given by

$$\beta(k,l) = \mathbf{y}^{H}(k,l)\Phi_{nn}^{-1}(k,l)\Phi_{xx}(k,l)\Phi_{nn}^{-1}(k,l)\mathbf{y}(k,l).$$
(10)

Submitting (9) and (10) to (8), the *a posteriori* MC-SPP is obtained.

Signal Mode and MC-SPP

Proposed Method

Experimental Settings

Experimental Results

Proposed Method Learning-based MC-SPP estimation

One low-parameter DNN model F with parameter Θ is employed to estimate MC-SPP, we have

$$\hat{\boldsymbol{\rho}}(k,l) = \boldsymbol{F}^{\Theta}\{\boldsymbol{y}(k,l)\},\tag{11}$$

where $\hat{p}(k, l)$ is the MC-SPP estimate.

During training, the *a priori* SAP is computed directly from the training data. It is obtained as

$$q(k, l) = 1 - \frac{\operatorname{tr} \left[\Phi_{xx}(k, l)\right]}{\operatorname{tr} \left[\Phi_{xx}(k, l)\right] + \operatorname{tr} \left[\Phi_{nn}(k, l)\right]}.$$
 (12)

Additionally, the loss function is Kullback-Leibler divergence, which is given by

$$\mathcal{L}(p(k,l),\hat{p}(k,l)) = p(k,l)\log\left(\frac{p(k,l)}{\hat{p}(k,l)}\right).$$
(13)

Proposed Method Statistics estimation

With the MC-SPP estimate in (11), the noise and clean PSD matrices are updated recursively,

$$\hat{\Phi}_{nn}(k,l) = \alpha_n \Phi_{nn}(k,l-1) + (1-\alpha_n)(1-\hat{p}(k,l))\mathbf{y}(k,l)\mathbf{y}^H(k,l), \quad (14)$$

$$\hat{\Phi}_{xx}(k,l) = \alpha_x \Phi_{xx}(k,l-1) + (1-\alpha_x)\hat{p}(k,l)\mathbf{y}^H(k,l), \quad (15)$$

where $0 < \alpha_N < 1$ and $0 < \alpha_x < 1$. With the *M* dimensional selection vector $\mathbf{u}_1 = [1, 0, ..., 0]^T$, the steering vector is given by

$$\mathbf{d}(k,l) = \frac{\hat{\Phi}_{xx}(k,l)\mathbf{u}_1}{\mathbf{u}_1^H \hat{\Phi}_{xx}(k,l)\mathbf{u}_1}$$
(16)

Proposed Method Improved MVDR Beamforming

Then the minimum variance distortionless response (MVDR) weight is computed by

$$\mathbf{h}_{\text{MVDR}} = \frac{\Phi_{nn}^{-1}(k, l) \mathbf{d}(k, l)}{\mathbf{d}^{H}(k, l) \Phi_{nn}^{-1}(k, l) \mathbf{d}(k, l)},$$
(17)

. To improve MVDR performance, with MC-SPP estimate, one modification is given by

$$\mathbf{h}_{\mathrm{mMVDR}}(k,l) = \hat{p}(k,l)\mathbf{h}_{\mathrm{MVDR}}^{H}(k,l). \tag{18}$$

With (18), beamforming can be performed by

$$\hat{x}_0(k,l) = \mathbf{h}_{\mathsf{mMVDR}}^H(k,l)\mathbf{y}(k,l). \tag{19}$$

Finally, submitting (18) to (19), the desired speech of the first channel can be obtained.

Proposed Method DNN-guided MVDR Beamforming

MC-SPP-based MVDR beamforming

Figure 1: The pipeline of the proposed learning-based *a posteriori* MC-SPP estimation for multi-channel speech enhancement. The DNN-based MC-SPP estimate guides the estimation of the statistics in the grey box.

Signal Mode and MC-SPP

Proposed Method

Experimental Settings

Experimental Results

Experimental Settings

- Scalar temporal averaging factors in (14) and (15): α_n = 0.99 and α_x = 0.1.
- Noise type: diffuse noise is generated in the isotropic environment [2].

 Table 1: Acoustic parameter configurations for experiment data generation

Speech dataset	DNS Challenge 2021, read speech
Noise dataset	Audioset Freesound, Demand
Room size	Length: 10m; width: 8m; height: 3m
Microphone Array	Linear array with 6 microphones
2*Array position	First microphone: [5, 1.5, 1.7]
	10 cm distance with others
Source position	from [5, 2.75, 1.7] to [8, 4.75, 1.7]
RT ₆₀	0.3s

Signal Mode and MC-SPP

Proposed Method

Experimental Settings

Experimental Results

S.Tao et al | DNN-guided Parameter Estimation for Speech Enhancement

Experimental Results

Figure 2: From left to right, in the first row, there are clean and noisy speech. In the second row, the MC-SPP estimate and enhanced speech.

Experimental Results

Table 2: Multi-channel speech enhancement performance comparison.

	PESQ	STOI	DNSMOS	Param	MB/s		
Noisy	1.42	0.632	2.49	-	-		
M1 [2]	1.46	0.673	2.44	-	-		
DNN-CRNN							
M2 [3]	1.57	0.644	2.38	4.59 M	24		
Ours	2.04	0.777	2.58	4.59M	24		
DNN-Conformer							
M3 [4]	1.58	0.732	2.40	8.44 M	69		
Ours (18)	1.82	0.723	2.54	3.79M	52		
DNN-DeFT-AN							
M4 [5]	2.21	0.783	2.69	0.68 M	1007		
Ours + [6]	1.44	0.707	2.31	0.68M	994		
Ours (18)	2.21	0.803	2.72	0.68 M	994		

Signal Mode and MC-SPP

Proposed Method

Experimental Settings

Experimental Results

- Achieved accurate MC-SPP estimation using the DNN.
- More accurate MC-SPP estimate can guide more accurate statistics estimation, i.e., noise PSD matrix and steering vector.
- Our proposed method outperforms other benchmarks in terms of enhanced speech quality.
- For our proposed method, we give a better solution that can achieve higher performance with the same DNN model.

References

- M. Souden, J. Chen, J. Benesty, and S. Affes, "Gaussian model-based multichannel speech presence probability," *IEEE Transactions on Audio, Speech, and Language Processing*, vol. 18, no. 5, pp. 1072–1077, 2009.
- [2] X. Anguera, C. Wooters, and J. Hernando, "Acoustic beamforming for speaker diarization of meetings," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 7, pp. 2011–2022, 2007.
- [3] S. Chakrabarty and E. A. Habets, "Time-frequency masking based online multi-channel speech enhancement with convolutional recurrent neural networks," *IEEE Journal of Selected Topics in Signal Processing*, vol. 13, no. 4, pp. 787–799, 2019.
- [4] M. Kim, S. Cheong, and J. W. Shin, "DNN-based Parameter Estimation for MVDR Beamforming and Post-filtering," in *Proc. INTERSPEECH 2023*, 2023, pp. 3879–3883.
- [5] D. Lee and J.-W. Choi, "DeFT-AN: Dense frequency-time attentive network for multichannel speech enhancement," *IEEE Signal Processing Letters*, vol. 30, pp. 155–159, 2023.
- [6] M. Souden, J. Chen, J. Benesty, and S. Affes, "An integrated solution for online multichannel noise tracking and reduction," *IEEE Transactions on Audio, Speech, and Language Processing*, vol. 19, no. 7, pp. 2159–2169, 2011.

