

Bitrate-Informed Coded Speech Enhancement Model

Haixin Zhao, Nilesh Madhu IDLab, Ghent University - imec, Belgium

1. Introduction

PRACTICAL DATA TRANSFER

Bandwidth limitations \rightarrow lossy codecs (AMR-WB, LC3+, opus, EVS, ...) Received signal distorted \rightarrow poorer listening experience, fatigue Multi-channel processing \rightarrow can distort spatial information

Clean Speech: X(k, l)

Aims

- 'Clean-up' received signal
 - Richer listening experience & lower listening fatigue
 - Improve intelligibility

Decoded Signal: $\tilde{X}(k, l)$

Fig. 1. Lossy codec framework

Enhancement of (De)Coded Speech

DNN-based enhancement

- Data-driven \rightarrow implicitly learn codec "behaviour"
- End-to-end or gain-based methods
- **BUT:** Enhancement models for different bitrates (generalisability across bitrates)
 - trained on lower bitrate, and apply for all bitrates
 - multiple bitrate-specific models

Solutions

- Multi-condition training (all bitrates shared one enhancement model) •
 - \rightarrow Loss bitrate-specific information
 - \rightarrow Can not access best performance for each bitrate
- Utilise bitrate information (utterance level)
 - \rightarrow Integrate bitrate information by fusion methods
 - \rightarrow Make *part* of network bitrate specific

2. Proposed Method

Generic enhancement framework

Bitrate-informed CRUSE model

Fig. 3. Bitrate-informed CRUSE model (first two convolution blocks are with parallel bitrate-dependent layers)

Experiments Setup

Dataset: TIMIT

Codecs

- LC3+: 16, 24, 32, 48, 64 kbps
- **AMR-WB:** 6.65, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05 kbps

Baselines

- **CED:** the state-of-the-art baseline [1]
- **CRUSE-MSE:** CRUSE model with the MSE loss function for ablation study
- **CRUSE:** CRUSE model with the combined compressed MSE and phase-aware loss function trained by various-bitrate coded speech.

[1] S. Korse, K. Gupta and G. Fuchs, "Enhancement of Coded Speech Using a Mask-Based Post-Filter," ICASSP 2020, pp. 6764-6768.

Evaluation on LC3+ & AMR-WB

Fig. 4. Evaluation results on LC3+ & AMR-WB codecs in WB-PESQ and STOI

Bitrate (Utterance-Level) Information Utilisation

- Parallel Bitrate-Dependent Block (PBD)
 - Common dependency extraction across bitrates
 - Extent of bitrate information utilisation
- **Bitrate Gating Block (BG)** •
- 1-Hot Vector Block (1-H) with FiLM (Feature-wise Linear Modulation)

Bitrate Gating Block

- Continue to use parallel bitrate-dependent layers structure inter-bitrate dependency ullet
- Remain the primary encoder layer (shared for all bitrates modes) common dependency •
- Combine them with soft gating with bias ullet
- Make scaling & bias values from local T-F bins, not sharing for all T-F bins ullet

Fig. 5. Structure of Bitrate-Gating convolution block

1-Hot Vector Block with FiLM

- Fusion method, bitrate information is used as one of the inputs ullet
- 1-hot vector utterance level information •
- Share the same information for each T-F bin
- Feature-wise linear modulation

Fig. 6. Structure of 1-hot vector block with FiLM

3. Experimental Results

Experiments in Bitrate-Informed methods

Dataset: DNS3 challenge (140 hours, wideband)

Codec:

• **Opus:** 6, 9, 12, 16 kbps

Bitrate-informed methods:

- Parallel Bitrate-Dependent Block (PBD)
- Bitrate Gating Block (BG)
- 1-Hot Vector Block (1-H) with FiLM (Feature-wise Linear Modulation)

Baselines:

- Multi-Conditional Training (MCT)
- Bitrate-Specific Training (BST)

Validation Loss

Fig. 7. Validation loss of bitrate-informed methods and baselines after convergence

Evaluation in instrumental metrics

Fig. 8. Evaluation results of bitrate-informed methods and baselines in WB-PESQ & STOI

Audio Samples

Clean speech

Clean speech

4. Conclusions

Conclusions

- Bitrate-informed methods improved performance on instrumental metrics: WB-PESQ, STOI, with little parameter and complexity and increase (1% model footprint, and 2% in MACs)
- Introduced joint exploitation mechanism within the enhancement network to capture both ulletInter-bitrate & common dependency, showing better information exploitation and generalisability.
- Compared with other bitrate-informed methods, the Bitrate-Gating block maximises the • utilisation of the bitrate information.
- Bitrate-gating can even outperform the bitrate-specific trained models in validation loss \bullet and instrumental metrics – showing the largest improvement extent from bitrate information.

Haixin Zhao and Prof. Dr.-Ing. Nilesh Madhu

ASPIRE, IDLab

haixin.zhao@ugent.be nilesh.madhu@ugent.be

https://aspire.ugent.be/

Ghent University in

